

Available online at www.sciencedirect.com

Journal of Photochemistry Photobiology A:Chemistry

Journal of Photochemistry and Photobiology A: Chemistry 185 (2007) 289–294

www.elsevier.com/locate/jphotochem

Effect of inorganic anions on the titanium dioxide-based photocatalytic oxidation of aqueous ammonia and nitrite

Xingdong Zhu, Mark A. Nanny, Elizabeth C. Butler ∗

School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73019, USA Received 20 April 2006; received in revised form 23 June 2006; accepted 24 June 2006

Available online 1 August 2006

Abstract

In this study, we investigated the effects of four inorganic anions $(Cl^-, SO_4^{2-}, H_2PO_4^{-}/HPO_4^{2-},$ and HCO_3^{-}/CO_3^{2-}) on titanium dioxide (TiO₂)-based photocatalytic oxidation of aqueous ammonia (NH₄+/NH₃) at pH ~ 9 and ~10 and nitrite (NO₂⁻) over the pH range of 4–11. The initial rates of NH₄⁺/NH₃ and NO₂⁻ photocatalytic oxidation are dependent on both the pH and the anion species. Our results indicate that, except for $CO₃²$, which decreased the homogeneous oxidation rate of NH₄+/NH₃ by UV-illuminated hydrogen peroxide, •OH scavenging by anions and/or direct oxidation of NH₄⁺/NH₃ and NO₂⁻ by anion radicals did not affect rates of TiO₂ photocatalytic oxidation. While HPO₄²⁻ enhanced NH_4^+/NH_3 photocatalytic oxidation at pH ~ 9 and ~10, $H_2PO_4^-/HPO_4^{2-}$ inhibited NO_2^- oxidation at low to neutral pH values. The presence of Cl⁻, SO₄²⁻, and HCO₃⁻ had no effect on NH₄⁺/NH₃ and NO₂⁻ photocatalytic oxidation at pH ~ 9 and ~10, whereas CO₃²⁻ slowed NH₄⁺/NH₃ but not NO₂[−] photocatalytic oxidation at pH ~ 11. Photocatalytic oxidation of NH₄⁺/NH₃ to NO₂[−] is the rate-limiting step in the complete oxidation of NH_4^+/NH_3 to NO_3^- in the presence of common wastewater anions. Therefore, in photocatalytic oxidation treatment, we should choose conditions such as alkaline pH that will maximize the NH_4^+/NH_3 oxidation rate.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Inorganic anions; Aqueous ammonia; Nitrite; Titanium dioxide; Hydroxyl radical

1. Introduction

Aqueous ammonia (NH₄⁺/NH₃), a major inorganic nitrogencontaining pollutant in wastewater, is toxic to aquatic life includ-ing fish [\[1,2\],](#page-5-0) and nitrite $(NO₂⁻)$ is a major intermediate of NH₄⁺/NH₃ oxidation [3-7]. Inorganic anions, such as chloride (Cl[−]), sulfate (SO₄^{2−}), phosphate (H₂PO₄[−]/HPO₄^{2−}), and bicarbonate/carbonate $(HCO₃⁻/CO₃²⁻)$, are also commonly present in wastewater with concentrations up to 1.5×10^{-3} M [\[8\].](#page-5-0) Many researchers have investigated the effects of inorganic anions on titanium dioxide $(TiO₂)$ -based photocatalytic degradation of organic compounds [\[9–18\],](#page-5-0) in which UV-illuminated $TiO₂$ generates hydroxyl radical ($^{\bullet}OH$), a non-selective oxidant, to degrade organic compounds. To the best of our knowledge, only Chen and Cao [\[19\]](#page-5-0) have studied the effect of Cl[−], SO₄^{2−}, and NO_3 ⁻ on NO_2 ⁻ photocatalytic oxidation using TiO₂ supported on hollow glass microbeads at pH 5. However, no systematic study has been done on the effect of inorganic anions on the TiO₂-based photocatalytic oxidation of both NH_4^+/NH_3 and $NO₂⁻$ as a function of pH. Accordingly, to effectively remove NH_4^+/NH_3 and NO_2^- from water and wastewater, it is critical to study whether inorganic anions could influence their photocatalytic oxidation. In this research, we investigated the effects of Cl⁻, SO₄²⁻, H₂PO₄⁻/HPO₄²⁻, and HCO₃⁻/CO₃²⁻ on NH_4^+/NH_3 and NO_2^- photocatalytic oxidation in TiO₂ suspensions for the pH range of 4–11.

Previous studies have shown that inorganic anions can scavenge •OH to form the corresponding anion radicals [\[20–25\]. A](#page-5-0)n example of \textdegree OH scavenging by CO_3^2 to form the carbonate radical $(CO_3^{\bullet -})$ [\[20\]](#page-5-0) is shown below:

$$
CO32- + °OH \rightarrow OH- + CO3•-
$$
 (1)

Hydroxyl radical scavenging by the anions Cl^- , $SO_4^2^-$, and $H_2PO_4^-/HPO_4^2$ as well as formation of the corresponding anion radicals (HOCl^{•–}, SO₄^{•–}, H₂PO₄[•]/HPO₄^{•–}) have also been shown in aqueous solutions [\[20\].](#page-5-0) Hydroxyl radical scavenging of the anions Cl^- , $HCO_3^-/CO_3^2^-$, $SO_4^2^-$, and H_2 PO₄⁻/HPO₄²⁻ may influence the photocatalytic oxidation

[∗] Corresponding author. Tel.: +1 405 325 3606; fax: +1 405 325 4217. *E-mail address:* ecbutler@ou.edu (E.C. Butler).

^{1010-6030/\$ –} see front matter © 2006 Elsevier B.V. All rights reserved. doi[:10.1016/j.jphotochem.2006.06.023](dx.doi.org/10.1016/j.jphotochem.2006.06.023)

of organic compounds [\[11,15,16,18,23\]](#page-5-0) by destroying the reactive species •OH. The corresponding anion radicals can themselves oxidize organic and inorganic compounds at different rates [\[20,26,27\],](#page-5-0) which can also influence overall rates of photocatalytic oxidation.

Previous researchers [\[9–13,18\]](#page-5-0) have proposed that competitive adsorption of the inorganic anions for active sites on the $TiO₂$ surface may also influence the photocatalytic degradation of organic compounds. For example, 0.01 M Cl− was found to decrease the degradation rate of 2-chlorophenol and 2-nitrophenol at pH values lower than the $TiO₂$ point of zero charge (pH_{pzc}) (6.2–7.5 for Degussa TiO₂ P 25 [\[28,29\]\),](#page-5-0) while Cl^- had no inhibitory effect at pH values greater than the pH_{pzc} due to negligible adsorption to the negatively charged $TiO₂$ sur-face [\[11\].](#page-5-0) Similarly, SO_4^2 ⁻ and H_2PO_4 ⁻ decreased the rate of photocatalytic degradation of ethanol, salicylic acid, and aniline at pH 4.1, which was attributed to electrostatic adsorption of these anions to the $TiO₂$ surface [\[9\].](#page-5-0) Decreased photocatalytic oxidation rates of an azo dye at neutral pH in the presence of $H_2PO_4^-/HPO_4^2$ were also observed [\[16\].](#page-5-0) This was possibly because of specific (i.e., non-electrostatic) adsorption of $H_2PO_4^-/HPO_4^2$ to the TiO₂ surface [\[30,31\].](#page-5-0)

In this research, we hypothesized that inorganic anions would influence rates of NH_4^+/NH_3 and NO_2^- photocatalytic oxidation in one of the following ways: (i) •OH scavenging by inorganic anions, (ii) direct oxidation of NH_4^+/NH_3 and $NO_2^$ by anion radicals, or (iii) adsorption of inorganic anions to the $TiO₂$ surface. We studied the photocatalytic oxidation of NH_4^+/NH_3 and NO_2^- as a function of pH with the four inorganic anions (Cl⁻, SO₄²⁻, HPO₄²⁻/H₂PO₄⁻, and HCO₃⁻/CO₃²⁻) that are commonly present in water and wastewater. Since •OH can be generated by UV illumination of H_2O_2 [\[32\],](#page-5-0) we used UV-illuminated H_2O_2 to study \bullet OH scavenging by inorganic anions and direct oxidation of NH_4^+/NH_3 and NO_2^- by anion radicals. Adsorption experiments were also conducted to measure the extent of adsorption of the different anions to the $TiO₂$ surface.

2. Materials and methods

2.1. Chemicals

Degussa TiO₂ P 25 (Akron, OH) was used without purification unless specifically mentioned. This catalyst had a BET surface area of $50 \pm 15 \,\mathrm{m}^2/\mathrm{g}$ and an average primary particle size of 21 nm [\[33\].](#page-5-0) According to personal communication with the Degussa Corporation, the estimated BET surface area for a specific batch of $TiO₂$ should be much narrower than this reported range. Nanopure water (18.1 M Ω cm) from an InfinityTM ultrapure water system (model D8961, Barnstead; Dubuque, IA) was used to prepare solutions in this study. The chemicals NaNO₂, NaNO₃ (Sigma–Aldrich; Milwaukee, WI), NH₄Cl, (NH_4) ₂SO₄ (Alfa Aesar, Ward Hill, MA), $(NH_4)_2CO_3$, and $(NH_4)_2HPO_4$ (Fisher Scientific, Fairlawn, NJ) were used as $NO₂⁻$, $NO₃⁻$, and NH4 +/NH3 sources. Sodium salts [Na2SO4, NaCl (Alfa Aesar), $Na₂HPO₄/NaH₂PO₄$ (Aldrich), and NaHCO₃/Na₂CO₃ (Fisher Scientific)] were used as inorganic anion sources. Thirty percent H_2O_2 (Fisher Scientific) was used for the homogeneous photochemical oxidation of NH_4^+/NH_3 and NO_2^- .

2.2. Photocatalytic oxidation experiments

The photochemical reactor (model 7840-185, Ace Glass, Vineland, NJ) consisted of three major components: a cylindrical Pyrex glass reactor, a double-walled quartz cooling water jacket, and a 450 W medium pressure Hg lamp. The cooling water jacket was inserted into the reactor, and the UV lamp was then placed inside the quartz cooling jacket. More details about the experimental apparatus have been reported in Ref. [\[6\].](#page-5-0) Our previous study showed that when $3 g/L TiO₂$ was used there was no significant homogeneous photochemical reaction of NH₄⁺/NH₃, because the high concentration of $TiO₂$ blocked UV transmittance to the interior portions of the reactor [\[6\].](#page-5-0) Therefore, to accurately evaluate photocatalytic oxidation of NH_4^+/NH_3 and $NO₂⁻$ in the presence of inorganic anions, 3 g/L TiO₂ was used in this study, except for homogeneous photochemical reactions where H_2O_2 and not TiO_2 was used as the \bullet OH source. The reaction solution was stirred with a magnetic stirrer to maintain a homogeneous $TiO₂$ suspension. Samples were taken during kinetic studies and filtered through $0.1 \mu m$ filter membranes, and the filtrates were used for measurement of pH, NH₄+/NH₃, $NO₂⁻$, and $NO₃⁻$.

2.3. Adsorption experiments

Since the commercial Degussa TiO₂ P 25 contains $\leq 0.3\%$ Cl− by weight [\[33\]](#page-5-0) and we measured 0.95 mg dissolved Cl−/g $TiO₂$ as an impurity, the $TiO₂$ was washed with nanopure water until the aqueous concentration of Cl− was lower than the detection limit of the ion chromatograph (1×10^{-6} M). No significant difference in the initial rate of $NO₂⁻$ photocatalytic oxidation at pH \sim 10 in the presence of 1×10^{-3} M Na₂SO₄ between the washed and unwashed $TiO₂$ was observed. In addition, the extent of adsorption to the washed and unwashed $TiO₂$ was the same when $H_2PO_4^-/HPO_4^2$ and $SO_4^2^-$ were used as the adsorbates. These experiments show that neither the Cl[−] impurity nor the washing treatment affected the $TiO₂$ reactivity or adsorption behavior.

Sodium perchlorate (NaClO₄, 0.01 M) was used as an inert electrolyte for adsorption experiments to maintain a constant ionic strength. To obtain a range of anion adsorption densities on the TiO₂ (3 g/L) surface over the pH range of 3–11, 2×10^{-4} M was chosen as the initial concentration of Na₂SO₄, NaH₂PO₄, or NaCl. Adsorption of $\mathrm{HCO_3}^{-}/\mathrm{CO_3}^{2-}$ to the TiO₂ surface in acidic solutions was not measured because $HCO₃$ ⁻ would be protonated to form dissolved $CO₂$ and carbonic acid under these conditions. Adsorption of $HCO₃⁻/CO₃²⁻$ to the TiO2 surface also was not measured in alkaline solutions due to interference by desorption of $CO₂$ from the Degussa TiO₂ P 25, as determined by a Shimadzu Total Organic Carbon Analyzer (TOC 5050A/ASI 5000A). At neutral pH, however, no significant adsorption of $HCO₃⁻$ was observed by measuring the inorganic carbon in the equilibrated aqueous solution using the TOC 5050A/ASI 5000A, and adsorption would likely be even lower in alkaline solutions, due to the increased negative charge of the $TiO₂$ surface at higher pH values.

The suspensions were adjusted to the target pH values using 1 M HClO4 or NaOH and shaken for 24 h in a constant temperature chamber (Sheldon Manufacturing, Model 2020, Cornelius, OR) at 25° C. The equilibrated suspensions were then filtered through the $0.1 \mu m$ membranes, and the filtrates were used for measurement of Cl⁻, SO_4^2 ⁻, $H_2PO_4^-$ /HP O_4^2 ⁻, and HC O_3^- . The percent adsorbed for each anion was calculated by dividing the adsorbed concentration of the anion by its total concentration.

2.4. Analytical methods

The concentrations of NO_2^- , NO_3^- , Cl^- , $SO_4^2^-$, and $H_2PO_4^-/HPO_4^2$ were determined using a Dionex ion chromatograph with an Ion Pac® AG 11 guard column $(4 \text{ mm} \times 50 \text{ mm})$, an Ion Pac[®] AS 11 anion analytical column (4 mm \times 250 mm), and an ED 50 conductivity detector, as described in Ref. [\[6\]. A](#page-5-0)n ammonia gas-sensing electrode (model 95-12, Thermo Orion; Beverly, MA) was used to determine the concentration of NH_4^+/NH_3 , and the measurement procedure is also reported in Ref. [\[6\]. A](#page-5-0) pH electrode (91-56, Thermo Orion) was used for pH measurement.

Five-point external standard calibration curves were used to calculate the concentrations of NH_4^+/NH_3 , NO_2^- , NO_3^- , Cl^- , HCO_3^- , $SO_4^2^-$, and $H_2PO_4^-$ /HPO 4^2^- . The standard solutions were prepared daily, and analysis of the standards was repeated every 20 samples. To minimize the potentially confounding effect of variable pH during the reaction, the initial rate was calculated from the best linear fit of NH_4^+/NH_3 or NO_2^- concentration versus time for the time period where both the pH and slope were nearly constant, and the error bars in Figs. 1 and 4 are 95% confidence intervals of the initial rates.

3. Results and discussion

3.1. NH4 +/NH3 photocatalytic oxidation

To examine the effects of inorganic anions on NH_4^+/NH_3 photocatalytic oxidation, we chose pH values of ∼9 (8.7–9.1) and ∼10 (10.1–10.3), because the photocatalytic oxidation of NH₄⁺/NH₃ is very slow or negligible at pH values lower than 9 [\[3–6\].](#page-5-0) In addition, pH \sim 11 (11.0–11.1) was chosen to separate the effects of HCO_3^- and $CO_3^2^-$ on NH_4^+/NH_3 photocatalytic oxidation, because the speciation of $HCO₃⁻/CO₃²⁻$ is pH dependent with a p K_a value of 10.3 for HCO₃⁻ [\[34\].](#page-5-0) For comparison, three control experiments (where no anions were added) were also conducted at pH \sim 9, \sim 10, and \sim 11. Fig. 1 illustrates the initial rates of NH_4^+/NH_3 photocatalytic oxidation in the presence of inorganic anions, as well as the control experiments, at these pH values.

When no anions were added, the initial rate of NH_4^+/NH_3 photocatalytic oxidation was approximately 50% higher at pH ∼ 10 compared to pH ∼ 9, and the same trend was observed in the presence of Cl[−] and SO₄^{2–} (Fig. 1). This increase in rates with pH is consistent with the fact that at pH \sim 10 versus \sim 9

Fig. 1. Effect of inorganic anions on NH₄⁺/NH₃ photocatalytic oxidation at $pH \sim 9$ and ~ 10 ($pH \sim 11$ for CO₃²⁻). [NH₄⁺/NH₃]: (9.6 ± 0.6) × 10⁻⁵ M; [anion]: 1×10^{-3} M; [TiO₂]: 3 g/L; error bars are 95% confidence intervals.

a greater fraction of NH_4^+/NH_3 is in the form of neutral NH_3 , which is more reactive with electrophilic $\text{O}H$ than is NH_4 ⁺ [\[35\].](#page-5-0) Compared to the control experiments, SO_4^2 ⁻, Cl⁻, and $HCO₃$ ⁻ yielded similar rates of NH₄⁺/NH₃ photocatalytic oxidation at a given pH, while $HPO₄^{2–}$ yielded a higher rate, and $\text{CO}_3{}^{2-}$ yielded a lower rate (Fig. 1). We first postulated that these differences were due to either (i) different rates of •OH scaveng-ing by Cl[−], SO₄^{2−}, HPO₄^{2−}, HCO₃[−]/CO₃^{2−} [\[36\]](#page-5-0) and/or (ii) different rates of direct oxidation of $NH₄⁺/NH₃$ by the corresponding anion radicals, with the fastest rate of direct oxidation by $HPO_4^{\bullet -}$.

3.1.1. Role of •*OH scavenging by anions and/or direct oxidation by anion radicals*

To determine whether •OH scavenging and/or direct oxidation by anion radicals were responsible for rate differences between the different anions, we performed NH_4^+/NH_3 oxidation experiments with UV-illuminated H_2O_2 (UV/ H_2O_2) in the presence of Cl⁻, SO₄²⁻, HPO₄²⁻, and HCO₃⁻/CO₃²⁻ at $pH \sim 10$, and CO_3^2 ⁻ at $pH \sim 11$. In this system, H_2O_2 generates •OH under UV irradiation [\[32\],](#page-5-0) which can be scavenged by anions in the solution to form the corresponding anion radicals (e.g., reaction [\(1\)\).](#page-0-0) A Vycor filter (ACE glass) was used to block wavelengths lower than 220 nm to prevent possible reactions of aqueous NH3 with oxidants other than •OH, including ozone generated from photodissociation of $O₂$ [\[37\]. T](#page-5-0)he results of these experiments are shown in [Fig. 2.](#page-3-0)

There was no significant NH_4^+/NH_3 oxidation in the presence of either HCO_3^{-}/CO_3^{2-} (pH \sim 10) or CO_3^{2-} (pH \sim 11), but significant oxidation in the presence of Cl^- , SO_4^2 ⁻, and $HPO₄^{2–}$ ([Fig. 2\),](#page-3-0) which is evidence that $CO₃^{2–}$ is a better $^{\bullet}OH$ scavenger than Cl^- , SO_4^2 ⁻, or HPO_4^2 ⁻. In the presence of CO_3^2 ⁻ at pH \sim 11, the initial rate of the TiO₂-based NH₄⁺/NH₃ photocatalytic oxidation was about one third the rate when Cl−, SO₄^{2–}, or HPO₄^{2–} was present at pH ~ 10 (Fig. 1), which is additional evidence of efficient [•]OH scavenging by $\mathrm{CO_3}^{2-}$ under these conditions. Since approximately 50% of $HCO₃⁻/CO₃²⁻$

Fig. 2. Effect of inorganic anions on the homogeneous photochemical oxidation of NH₄⁺/NH₃ by UV/H₂O₂ with a Vycor filter at pH ~ 10, except for the data series labeled CO_3^2 , which was done at pH ~ 11. [NH₄⁺/NH₃]: $(9.6 \pm 0.6) \times 10^{-5}$ M; [H₂O₂] = 0.001 M; [anion]: 0.005 M.

is in the form of CO_3^2 ⁻¹ at pH \sim 10, our experiments do not provide information on the relative •OH scavenging efficiency of $CO₃²⁻$ versus HCO₃⁻. However, Buxton et al. [\[36\]](#page-5-0) reported that CO_3^2 ⁻ scavenges •OH more rapidly than HCO_3^- with second order rate constants of $3.9 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ for $\text{CO}_3{}^{2-}$ and $8.5 \times 10^6 \,\mathrm{M}^{-1}\,\mathrm{s}^{-1}$ for HCO₃⁻. This can explain why we observed a smaller initial rate of NH₄⁺/NH₃ photocatalytic oxidation at pH \sim 11 (when CO₃^{2–} was the predominant species) than at pH ~ 9 (when HCO_3 ⁻ was the predominant species) [\(Fig. 1\).](#page-2-0) As a practical matter, these results suggest that carbonate alkalinity can strongly affect the rates of NH_4^+/NH_3 photocatalytic oxidation at pH values where significant CO_3^2 ⁻ is present.

Fig. 2 also shows that there was no significant difference in initial rates of NH_4^+/NH_3 oxidation by UV/H_2O_2 in the presence of Cl⁻, SO₄²⁻, or HPO₄²⁻, unlike the results from TiO₂-based NH₄⁺/NH₃ photocatalytic oxidation ([Fig. 1\),](#page-2-0) where HPO₄²⁻ led to faster rates than the other anions. This suggests that, unlike CO_3^2 ⁻ and possibly HCO₃⁻, •OH scavenging by Cl⁻, SO₄²⁻, or HPO_4^2 ⁻ or direct oxidation of NH₄⁺/NH₃ by the corresponding anion radicals do not influence reaction rates in the $TiO₂$ photocatalytic system. If these processes did control reaction rates in the UV/TiO₂ system, we would expect the same trends in reactivity in both the UV/TiO₂ and the UV/H₂O₂ systems, which we did not observe. Based on this, we next examined whether adsorption of anions to the $TiO₂$ surface was responsible for the differences in TiO2 photocatalytic oxidation rates when $\rm{HPO_4}^$ versus SO_4^2 ⁻, Cl⁻, or HCO₃⁻ was present [\(Fig. 1\).](#page-2-0)

3.1.2. Role of anion adsorption

The adsorption of $H_2PO_4^-/HPO_4^2^-$, $SO_4^2^-$, and Cl⁻ to the $TiO₂$ surface over the pH range of 3–11 is shown in Fig. 3. There was significant adsorption of HPO_4^2 , but no significant adsorption of Cl[−] and SO₄^{2–}, at pH ~ 9 and ~10. Based on this, as well as the greater rate of NH₄⁺/NH₃ photocatalytic oxidation in the presence of HPO_4^2 ⁻ versus Cl⁻, SO₄²⁻, and HCO_3^- ([Fig. 1\),](#page-2-0) we concluded that adsorption of $HPO₄^{2–}$ actually enhanced the

Fig. 3. Adsorption of chloride (Cl^-) , sulfate (SO_4^{2-}) and phosphate $(H_2PO_4^-/HPO_4^2^-)$. [Anion]: 2 × 10⁻⁴ M; [NaClO₄]: 0.01 M; [TiO₂]: 3 g/L; adsorption equilibrium time: 24 h.

initial rate of NH_4^+/NH_3 photocatalytic oxidation. This may be because adsorption of $HPO₄^{2–}$ increased the negative charge of the TiO₂ surface [\[38\],](#page-5-0) leading to neutralization of NH_4^+ to $NH₃$ near the TiO₂ surface. This would result in a greater initial rate of NH₄⁺/NH₃ photocatalytic oxidation, because NH₃ reacts more rapidly with OH than does NH₄⁺ [\[35\].](#page-5-0)

3.2. NO2 − *photocatalytic oxidation*

Since NO_2^- is an important intermediate in the photocatalytic oxidation of NH_4^+/NH_3 [\[3–7\], w](#page-5-0)e also studied how inorganic anions affected NO_2^- photocatalytic oxidation. For these experiments, we chose a broad pH range of 4–11 since the different phenomena that could affect reaction rates, such as adsorption, would likely vary significantly over this pH range. Note that we did not study $\mathrm{NO_2}^-$ photocatalytic oxidation in the presence of HCO_3^- at acidic pH (< 7.5), because HCO_3^- would be protonated to form dissolved $CO₂$ and carbonic acid under these conditions. The initial rate of $NO₂⁻$ photocatalytic oxidation was also measured when no anions were added (control experiment). [Fig. 4](#page-4-0) shows the initial rates of $NO₂^-$ photocatalytic oxidation in the presence of the anions, as well as the control experiment.

A comparison of [Figs. 1 and 4](#page-2-0) shows that $NO₂⁻$ photocatalytic oxidation occurs much faster than NH_4^+/NH_3 photocatalytic oxidation in the presence of common wastewater anions at pH ∼ 9 and ∼10 (the pH values below which no significant photocatalytic oxidation of NH_4^+/NH_3 is observed). Thus, photocatalytic oxidation of NH_4^+/NH_3 to NO_2^- is the rate-limiting step in the complete oxidation of NH_4^+/NH_3 to NO_3^- in the presence of these anions.

In alkaline solutions ($pH > 7.5$), the initial rates of $NO_2^$ photocatalytic oxidation decreased with increasing pH in the presence of all anions [\(Fig. 4\)](#page-4-0). This decrease in rate may be explained by decreasing adsorption of $NO₂⁻$ to the TiO₂ surface with increasing pH due to electrostatic repulsion [\[6\]](#page-5-0) and/or the involvement of one or more acid-conjugate base pairs of possible intermediates, such as HOONO/−OONO or

Fig. 4. Effect of inorganic anions on $NO₂⁻$ photocatalytic oxidation over the pH range of 4–11. [NO₂⁻]: (1.9 ± 0.1) × 10⁻⁴ M; [anion]: 1 × 10⁻³ M; [TiO₂]: 3 g/L; error bars are 95% confidence intervals. Some data for the SO_4^2 panel were previously reported in Ref. [\[6\]. O](#page-5-0)pen circles represent the initial rate of $NO₂⁻$ photocatalytic oxidation at pH \sim 6 when no anions were added.

 $HOODO_2$ \sim $OONO_2$, in which the conjugate base acts as a \bullet OH radical scavenger or otherwise slows the oxidation of NO_2^- to $NO₃⁻$ [\[6\]. B](#page-5-0)oth phenomena could explain the uniform trend of decreasing reaction rates with increasing pH in this pH region.

Compared to the control experiment, SO_4^2 ⁻ and $H_2PO_4^-$, but not Cl⁻, inhibited NO₂⁻ photocatalytic oxidation at pH \sim 6. In addition, at low to neutral pH in the presence of SO_4^2 ⁻ and $H_2PO_4^-$ /HPO₄²⁻, the initial rate of NO₂⁻ photocatalytic oxidation increased with increasing pH to a maximum at pH ∼ 7.5 (Fig. 4). However, nearly constant initial rates were observed for Cl− in this pH range. All these phenomena are possibly due to different adsorption densities of the anions to the $TiO₂$ surface. Next we correlated the initial rates of NO_2^- photocatalytic oxidation with adsorption densities of anions at low to neutral pH values.

3.2.1. Role of anion adsorption

The negligible adsorption of Cl^- to the TiO₂ surface at low to neutral pH ([Fig. 3\) i](#page-3-0)s likely responsible for the nearly constant initial rates for Cl− in this pH region (i.e., no rate increase with increasing pH). The decrease in adsorption densities of SO_4^2 ⁻ and $H_2PO_4^-/HPO_4^2$ on the TiO₂ surface with increasing pH up to pH \sim 7.5, as shown in [Fig. 3,](#page-3-0) can explain the increasing initial rates in the presence of these anions. At low to neutral pH values, greater adsorption of $H_2PO_4^-/HPO_4^2^-$ to the TiO₂ sur-face ([Fig. 3\) d](#page-3-0)ecreased the rate of NO_2^- photocatalytic oxidation more than the other anions, for which adsorption was less significant. This is because greater adsorption of $\rm H_2PO_4^-/HPO_4^{2-}$ would result in competition with $NO₂⁻$ for adsorption sites, slowing the $NO₂⁻$ oxidation rate. The different kinetic behavior for NO_2^- and NH_4^+/NH_3 photocatalytic oxidation in the presence of $H_2PO_4^-/HPO_4^2^-$ (i.e., increased reaction rates for NH₄⁺/NH₃ photocatalytic oxidation and decreased reaction rates for NO_2^- photocatalytic oxidation) may be due in part to the fact that rates of $NO₂⁻$ photocatalytic oxidation are more surface-area-dependent than rates of NH₄⁺/NH₃ photocatalytic oxidation [\[6\], p](#page-5-0)erhaps due to a closer association of NO_2^- with the $TiO₂$ surface.

Consistent with these observations, Fig. 4 also illustrates that for any given pH value lower than 7.5, initial rates of $NO₂$ ⁻ photocatalytic oxidation increased in the order $H_2PO_4^-/HPO_4^2^- < SO_4^2^- < Cl^-$, which correlates with decreasing extent of adsorption to the $TiO₂$ surface $(H_2PO_4^-/HPO_4^2^- > SO_4^2^- > Cl^-)$ [\(Fig. 3\)](#page-3-0). Additional evidence that anion adsorption inhibits $NO₂⁻$ photocatalytic oxidation below neutral pH comes from experiments at pH ∼ 6 in which the concentration of $H_2PO_4^-/HPO_4^2^-$ was varied. When the concentration of $H_2PO_4^-/HPO_4^2$ was decreased from 1×10^{-3} to 1×10^{-4} M, the initial rate increased from $(1.76 \pm 0.1) \times 10^{-6}$ to $(4.98 \pm 0.27) \times 10^{-6}$ M min⁻¹. Interestingly, despite significant adsorption of $H_2PO_4^-/HPO_4^2^-$ to the TiO₂ surface over a range of pH values, NO_2^- photocatalytic oxidation was never completely inhibited, which has practical application for treatment of high H_2PO_4 ⁻/HPO₄²⁻ wastewaters.

4. Conclusions

In this study, we systematically investigated NH₄⁺/NH₃ and $NO₂⁻$ photocatalytic oxidation in the presence of common inorganic anions in a bench scale reactor. Neither hydroxyl radical scavenging by Cl⁻, SO₄²⁻, or HPO₄²⁻, nor direct oxidation by the corresponding anion radicals, was significant in $TiO₂$ photocatalytic oxidation of NH₄⁺/NH₃, but CO_3^2 ⁻ significantly inhibited NH_4^+/NH_3 oxidation due to its efficient $^{\bullet}OH$ scavenging. The presence of Cl[−], SO₄^{2−}, or HCO₃[−] did not inhibit photocatalytic oxidation since there was negligible adsorption of these species at the pH values at which NH₄⁺/NH₃ oxidation occurs (>9). Adsorption of $HPO₄^{2–}$ resulted in enhanced NH₄⁺/NH₃ photocatalytic oxidation.

At pH values lower than \sim 7.5, Cl[−] had no effect on the initial rates of NO2 $^{-}$ photocatalytic oxidation, while SO4 $^{2-}$ and H_2 PO₄⁻/HPO₄²⁻ slowed NO₂⁻ oxidation due to adsorption to the TiO₂ surface. At pH greater than ∼7.5, the initial rates of $NO₂⁻$ photocatalytic oxidation were similar and independent of the anion present. H_2PO_4 ⁻/HPO₄²⁻ did not dramatically hinder $NO₂⁻$ photocatalytic oxidation, despite the fact that there was significant adsorption of $HPO₄^{2–}$ in this pH region.

Our results indicate that photocatalytic oxidation of NH_4^+/NH_3 to NO_2^- is the rate-limiting step in the complete oxidation of NH_4^+/NH_3 to NO_3^- in the presence of common wastewater anions. Therefore, conditions such as alkaline pH should be chosen to maximize the NH_4^+/NH_3 oxidation rate, and not the NO_2^- oxidation rate, in treatment processes designed to remove NH_4^+/NH_3 from water and wastewater. In addition, pretreatment to lower carbonate alkalinity is likely needed for wastewater with high carbonate alkalinity prior to NH_4^+/NH_3 removal by $TiO₂$ photocatalytic oxidation at pH values above ∼9. Typical wastewater concentrations of Cl−, SO4 ²−, and $HPO₄^{2–}$ should not adversely affect $NH₄⁺/NH₃$ removal by TiO2 photocatalytic oxidation.

Acknowledgements

The authors thank the National Aeronautics and Space Administration (NCC 5-586) and the Oklahoma State Regents for Higher Education for financial support. We thank the anonymous reviewers for helpful comments on this manuscript.

References

- [1] D.J. Randall, T.K.N. Tsui, Marine Pollut. Bull. 45 (2002) 17–23.
- [2] K.S. Tilak, S.J. Lakshmi, T.A. Susan, J. Environ. Biol. 23 (2002) 147–149.
- [3] C.H. Pollema, E.B. Milosavljević, J.L. Hendrix, L. Solujić, J.H. Nelson, Monatsh. Chem. 123 (1999) 333–339.
- [4] A.H. Wang, J.G. Edwards, J.A. Davies, Sol. Energy 52 (1994) 459–466.
- [5] E.M. Bonsen, S. Schroeter, H. Jacobs, J.A.C. Broekaert, Chemosphere 35 (1997) 1431–1445.
- [6] X.D. Zhu, S.R. Castleberry, M.A. Nanny, E.C. Butler, Environ. Sci. Technol. 39 (2005) 3784–3791.
- [7] K. Takeda, K. Fujiwara, Water Res. 30 (1996) 323–330.
- [8] G. Tchobanoglous, F.L. Burton, H.D. Stensel, Wastewater Engineering: Treatment and Reuse, third ed., McGraw-Hill, Boston, 2003, p. 109.
- [9] M. Abdullah, G.K.C. Low, R.W. Matthews, J. Phys. Chem. 94 (1990) 6820–6825.
- [10] H. Chen, O. Zahraa, M. Bouchy, J. Photochem. Photobiol. A: Chem. 108 (1997) 37–44.
- [11] K. Wang, Y. Hsieh, M. Chou, C. Chang, Appl. Catal. B: Environ. 21 (1999) 1–8.
- [12] P. Calza, W. Pelizzetti, Pure Appl. Chem. 73 (2001) 1839–1848.
- [13] X.H. Xia, J.L. Xu, Y. Yun, J. Environ. Sci. 14 (2002) 188–194.
- [14] M. Sökmen, A. Özkan, J. Photochem. Photobiol. A: Chem. 147 (2002) 77–81.
- [15] C. Hu, J. Yu, Z. Hao, P.K. Wong, Appl. Catal. B: Environ. 46 (2003) 35– 47.
- [16] C. Hu, Y. Tang, L. Lin, Z. Hao, Y. Wang, H. Tang, J. Chem. Technol. Biotechnol. 79 (2004) 247–252.
- [17] A. Őzkan, M.H. Őzkan, R. Gűrkan, M. Akcay, M. Sőkmen, J. Photochem. Photobiol. A: Chem. 163 (2004) 29–35.
- [18] W. Zhang, T. An, M. Cui, G. Sheng, J. Fu, J. Chem. Technol. Biotechnol. 80 (2005) 223–229.
- [19] S. Chen, G. Cao, Sol. Energy 73 (2002) 15–21.
- [20] P. Neta, R.E. Huie, A.B. Ross, J. Phys. Chem. Ref. Data 17 (1988) 1028–1262.
- [21] G.G. Jayson, B.J. Parsons, A.J. Swallow, J. Chem. Soc. Faraday Trans. 69 (1973) 1597–1607.
- [22] J. Kochany, E. Lipczynska-Kochany, Chemosphere 25 (1992) 1769–1782.
- [23] C.H. Liao, S.F. Kang, F.A. Wu, Chemosphere 44 (2001) 1193–1200.
- [24] G. Wu, Y. Katsumura, Y. Muroya, M. Lin, T. Morioka, J. Phys. Chem. A 106 (2002) 2430–2437.
- [25] M.A. Brusa, M.A. Grela, Phys. Chem. Chem. Phys. 5 (2003) 3294– 3298.
- [26] P. Maruthamuthu, P. Neta, J. Phys. Chem. 82 (1978) 710–713.
- [27] P. Neta, P. Maruthamuthu, P.M. Carton, R.W. Fessenden, J. Phys. Chem. 82 (1978) 1875–1878.
- [28] A. Fernández-Nieves, C.N. Richter, F.J. De las Nieves, Prog. Colloid Polym. Sci. 110 (1998) 21–24.
- [29] M. Kosmulski, J. Colloid Interface Sci. 275 (2004) 214–224.
- [30] P.A. Connor, A.J. McQuillan, Langmuir 15 (1999) 2916–2921.
- [31] F. Chen, J. Zhao, H. Hidaka, Res. Chem. Intermed. 29 (2003) 733– 748.
- [32] W. Chu, Chemosphere 44 (2001) 935-941.
- [33] Degussa Website, [https://www1.sivento.com/wps/portal/p3/aerosil/](https://www1.sivento.com/wps/portal/p3/aerosil/productsearch) [productsearch.](https://www1.sivento.com/wps/portal/p3/aerosil/productsearch)
- [34] W. Stumm, J.J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, third ed., John Wiley & Sons, New York, 1996, pp. 120 and 152.
- [35] Y. Ogata, K. Tomizawa, K. Adachi, Mem. Fac. Eng., Nagoya Univ. 3 (1981) 58–65.
- [36] G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17 (1988) 514–525.
- [37] J.I. Steinfeld, J.S. Francisco, W.L. Hase, Chemical Kinetics and Dynamics, second ed., Prentice Hall, Upper Saddle River, New Jersey, 1999, p. 153.
- [38] F.J. Hingston, R.J. Atkinson, A.M. Posner, J.P. Quirk, Nature 215 (1967) 1459–1461.